
Scaling Software Security Analysis to Satellites:
Automated Fuzz Testing and Its Unique Challenges

Johannes Willbold1, Moritz Schloegel2, Florian Göhler1, Tobias Scharnowski2,
Nils Bars2, Simon Wörner2, Nico Schiller2, Thorsten Holz2

1 Ruhr University Bochum
first.lastname@ruhr-uni-bochum.de

2 CISPA Helmholtz Center for Information Security
first.lastname@cispa.de

Abstract—The security of space assets is becoming an increas-
ingly important concern, as the number of satellite services
offered from space grows at an accelerating rate. In recent
years, the functionalities of satellites have become increasingly
sophisticated, allowing them to seamlessly provide complex ser-
vices such as space-based Internet and high-resolution Earth
observation. A significant contribution to these advancements
was made by the software systems that control spacecraft in
the harsh space environment. However, the development of
satellite software poses a significant challenge due to the ab-
sence of physical access to the spacecraft during its mission.
Recent research conducted by Willbold et al. has highlighted
software security concerns, revealing an alarming absence of
modern security measures among many satellites. Their analysis
uncovered various security vulnerabilities in satellite software
that could potentially allow attackers to gain full control over the
spacecraft. Despite these results, their analysis is limited by the
fact that software is analyzed manually, making the approach
hard to scale.

In this paper, we propose to use an automated vulnerability
analysis technique, fuzz testing (fuzzing for short), to scale the
analysis without the need of a human expert. Fuzzing is a
dynamic program analysis technique that has proven highly
successful at locating bugs in application software, such as
browsers, or the Linux kernel. Its effectiveness has seen
widespread adoption among the industry, such as Google or
Meta, and launched multiple research efforts to make it even
more effective. In essence, fuzzing creates a large number of
inputs for the system under test and executes them while mon-
itoring the system behavior, i.e., execution paths and crashes.
Advanced approaches use lightweight instrumentation to gain
introspection capabilities, allowing them to track the program
path executed by a specific input and thus to guide the explo-
ration to unseen program behavior. Despite its success, applying
fuzzing to spacecraft presents unique challenges that we intro-
duce and thoroughly discuss in this paper. First, obtaining feed-
back from the target program proves challenging, necessitating
the exploration of firmware rehosting techniques where the tar-
get firmware is executed in an emulated environment without a
precise representation of all peripherals. Second, satellites often
employ complex boot processes that ensure memory integrity,
perform device checks and configurations, and execute various
time-intensive tasks, thereby posing challenges to approaches
like fuzzing that aim to execute a program as frequently as
possible, i.e., thousands of times per second. Finally, fuzzers rely
primarily on crashes to identify bugs in the software under test,
which fails to account for unrecoverable configuration issues.
Beyond discussing these issues, we analyze their practical impact
on the software of three satellites, ESTCube-1, OPS-Sat, and
Flying Laptop. By discussing the challenges associated with ap-
plying fuzzing to spacecrafts and exploring potential solutions,
we aim to contribute to the advancement of security practices in
the aerospace industry.

979-8-3503-0462-6/24/$31.00 ©2024 IEEE

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND . 2
3. ATTACK SURFACE . 4
4. FUZZING CHALLENGES . 5
5. CASE STUDIES . 5
6. RELATED WORK . 9
7. CONCLUSION . 10
ACKNOWLEDGMENTS . 10
REFERENCES . 10
BIOGRAPHY . 11

1. INTRODUCTION
MITRE’s 2023 ranking of top 25 weaknesses [1] lists out-of-
bounds writes as the number one dangerous software weak-
ness. This vulnerability allows an attacker to corrupt data and
often hijack the execution of a program. Other common types
of memory corruption vulnerabilities, including use-after-
frees, out-of-bounds reads, null pointer dereferences, or inte-
ger overflows, are also included in the ranking, emphasizing
the crucial role that bugs related to memory safety still play
in software. This threatens, in particular, software written in
memory-unsafe programming languages such as C or C++,
where the programmer is responsible for memory manage-
ment, leading to numerous bugs in the categories mentioned
above. Despite being susceptible to these critical security
bugs, languages like C enjoy high popularity for writing
compact software with high performance. Their character-
istics make them a perfect fit for use in embedded devices or
satellites, where space and performance constraints dominate
the development considerations. At the same time, their
security is an underrated concern, as the continued popularity
of these bugs in the year 2023 demonstrates. Being known for
decades, many programs still suffer from basic bugs, raising
the question of how to address such problems. As software is
notoriously hard to secure, multiple approaches to identifying
bugs and mitigating potential vulnerabilities may be needed.

Ranging from simple measures such as code review or pair
programming to sophisticated static and dynamic analysis
techniques, a vast number of options exist to detect vul-
nerabilities and programming errors in software. While
having multiple eyes on the code may increase its quality,
it is unlikely to root out all bugs, especially complex ones
that may escape the developers’ attention. Static analysis
considers all possible program behaviors but lacks insight
into which code is executed at runtime. This often leads

1

to many false positive reports, tiring developers and taking
away their time from fixing actual bugs. Dynamic analysis,
on the other hand, reports only actually observed errors but
can never guarantee that a program is bug-free – it merely
reports on encountered bugs. Arguably, finding and fixing
observable bugs is a worthwhile low-hanging fruit, raising
the bar for an attacker.

When looking at recent dynamic software testing techniques,
we find that fuzz testing, often abbreviated as fuzzing, has
proven highly effective and one of the strongest techniques to
identify bugs in software. This technique generates different
inputs for the software under test and observes its behavior,
using crashes and similar abnormal behavior as an oracle for
bugs. At the same time, it often uses lightweight program
instrumentation to track the path exercised by a given input,
allowing the fuzzer to keep track of the explored program
behavior and make informed decisions regarding an input’s
interestingness (i.e., if it explored new functionality). One
of its most significant advantages is that every bug report
comes with a reproducer, the input that triggered this bug.
Fuzzing has proven its worth in uncovering numerous bugs in
userspace software but also in kernels, hypervisors, firmware,
and even hardware. It has been successfully used to test more
than 1, 000 popular open-source software programs [2] and
is successfully used by large tech companies, such as Google
and Meta; however, it has not yet found full adoption in other
areas, such as testing embedded devices or remote assets.

When studying why fuzzing has found little application in
testing satellite software, we find several challenges unique
to spaceborne assets that require careful consideration of how
and where to apply fuzz testing. First, modern fuzzers rely on
so-called coverage feedback, i.e., lightweight instrumentation
that tracks what parts of the program an input executes,
which, in turn, relies on the presence of source code or
introspection capabilities. For satellites and other firmware
interacting with peripherals, a setup allowing such feedback
and considering the interactions with peripherals is required.
Second, the nature of satellite software makes it significantly
different from typical programs run on commodity comput-
ers. It usually features elaborate memory health checks and
similar operations that may take significant time after start-
up. As fuzzing thrives on a high number of executed inputs,
any slow operation during initialization is an impediment that
must be taken care of. Third, when finding a bug, the fuzzer’s
output is an input triggering this particular bug, for example,
by crashing the software. Yet, a single crashing input without
further explanation and expertise may pose a challenge for
software developers to address if they are unfamiliar with the
details. These challenges make it hard to apply fuzzing and
require a careful setup to leverage its effectiveness.

In this work, we systematically analyze how satellites can
be tested using fuzzing. We first provide an extensive intro-
duction to the area of fuzzing, analyze the attack surface of
satellites, and discuss the challenges unique to the scenario
of fuzzing satellite firmware. We then present three different
approaches to fuzz test these satellites. For each approach, we
run a case study testing this approach for an actual satellite;
we outline challenges, problems, and our experience with
applying fuzz testing to such real satellites. Our results
indicate that two of these three approaches are feasible in
practice, making them an excellent choice for testing satellite
firmware before the satellite is deployed.

Contributions. In summary, our key contributions are:

• We discuss five key challenges arising when fuzz testing
satellites and highlight the differences between fuzzing satel-
lite firmware and other embedded device applications.

• We present three different approaches to applying fuzzing
to satellite firmware while analyzing how they address the
previously defined challenges.

• We experimentally evaluate these approaches against real-
world satellite firmware to analyze the results and the amount
of manual effort required to realize them.

All bugs discovered during our security analysis of the real-
world firmware have been responsibly disclosed to the re-
spective operators.

2. BACKGROUND
Fuzzing

Fuzzing executes a target application with numerous inputs
with the overarching goal of triggering unexpected behavior,
thus revealing bugs. The inputs for the target can be created
by either mutating inputs known a priori or by generat-
ing them from scratch based on some domain-specific lan-
guage, such as a grammar that describes the input’s structure.
These techniques are known as mutational and generational
fuzzing, respectively.

Different types of feedback mechanisms have been devel-
oped for fuzzers to steer the fuzzing process. Depending
on the information they receive on their target’s execution,
we distinguish between three categories of fuzzers: blind,
feedback-driven, and heavyweight feedback-driven fuzzers.
Although their boundaries are often blurred, the complexity
and computational requirements increase with each category.
Subsequently, we discuss each of these categories in detail.

Blind Fuzzers—A blind fuzzer is comparatively simple in its
implementation and mostly follows a brute-force search with-
out receiving in-depth feedback, which explains its name. It
takes a set of seed files or some kind of input specification
and uses them to generate inputs by mutating a seed file
or leveraging the input format specification. The program
under test is then executed with this input, but no information
from within the program is received (other than whether the
program has crashed). This technique’s main drawback is
the lack of feedback: It does not recognize inputs reaching
deeper into the state space, such as nested conditions or
complex protocol parsing. This is because the fuzzer does
not receive any feedback on whether a particular input solved
a nesting level and, consequently, whether it should continue
mutating the input that allowed it to proceed. Consequently,
the fuzzer likely discards these inputs, thus discarding the
solved constraint and facing the same challenge again. In
short, without knowing how individual inputs performed, the
fuzzer can not decide on what input to focus on.

Feedback-driven Fuzzers—To overcome the limitations im-
posed by this blindness, more advanced fuzzers rely on feed-
back from the program under test. This effectively tackles
the main challenge of deciding whether an input exercised
some beneficial behavior in the target and should therefore
be kept for future use. In contrast to blind fuzzers, feedback-
driven fuzzers use lightweight instrumentation techniques to
exfiltrate meta information related to a specific input provided
to the target application. This feedback allows constructing a
fuzzing loop, as visualized in Figure 1. In this loop, the fuzzer

2

first generates input for the target application, then sends it
to the application, executes it, receives feedback, and adapts
consecutive inputs based on this feedback.

The most prominent examples of such fuzzers are AFL [3],
its successor AFL++ [4], and its derivatives [5], [6], [7],
which all use code coverage as their core feedback metric
to determine whether a new code path has been covered in
the target. This feedback is powerful, as it provides the
fuzzer information on whether a constraint, such as a compare
instruction, was solved without invalidating previously solved
constraints.

Although coverage-based fuzzing already yields enhanced
results, it still faces various challenges, such as complex
input data constraints enforced by the target application. For
example, passing comparisons that incorporate magic values
(predefined constants) is challenging to solve for coverage-
based fuzzers, as overcoming such checks is a binary op-
eration, i.e., the provided inputs contain the correct value
or not; hence, the fuzzer cannot narrow down the search
space. Several techniques have been proposed to tackle issues
related to more complex constraints [8], [9], [10], [11], [12],
[13], [14].

Another more technical challenge in the fuzzing loop is
the repetitive execution of the fuzzing target, as in a naive
approach, every iteration of the fuzzing loop would restart
the target. However, executing an application in modern op-
erating systems entails the startup process of the executable,
which is time-consuming because, for example, libraries have
to be loaded. Performing this initialization procedure for
every iteration is redundant, which is why multiple strategies
exist to skip this process. One strategy uses a so-called fork
server, in which the Linux-based fork functionality is used.
In this approach, the target program is started once and halted
when it reaches a predefined point during its execution, i.e.,,
some function reading the fuzzing input from a file. Then, the
application is forked, and only the newly created copy of the
process consumes the fuzzing input and is allowed to proceed
with its execution. In all consecutive loop iterations, a copy
of the halted program is used. This technique ensures that
each loop iteration skips the time-consuming start-up routine
while still having a fresh global state. Another approach is
called persistent state fuzzing. In this approach, the code
part that is the primary fuzzing focus in the target is moved
into a loop, i.e., a for-loop. Then, the loop requests a
new fuzzing input in each loop iteration. This approach
can yield higher performance as the fork server but is also
more invasive regarding code modifications, and the global
state of the application can potentially be altered within this
loop, which persists across loop iterations. Finally, there are
snapshot-based approaches that take a full snapshot of the
application at some point in time, i.e., just before fuzzing
input is read by the target, and restore to the snapshot at the
end of the fuzzing loop iteration.

Further, since the main purpose of fuzzers is to identify
bugs and vulnerabilities, it is crucial to have methods that
identify error-inducing behavior in a target program. The
most commonly used oracle to tell if a program misbehaves
is to detect whether it crashes. This kind of bug oracle is
commonly used as it is easy to implement. However, in many
cases, an input can be problematic even if they do not cause
the program to crash. For example, a memory corruption
might not lead to a crash but to an undefined and perhaps
unstable state.

Target
ProgramFuzzerInitial Inputs

/ Seeds

Figure 1. The fuzzing loop of a feedback-driven fuzzer. The
fuzzer starts from a series of initial inputs, receives coverage
feedback, mutates the input to check for changing coverage.

Heavyweight Feedback-driven Fuzzers— In contrast to re-
lying solely on lightweight instrumentation, heavyweight
feedback-driven fuzzers augment coverage-based techniques
with feedback gathered through advanced program analysis
techniques, e.g., taint tracking [11] or concolic/symbolic
execution [13], [15], [16], [12]. Utilizing taint tracking allows
us to reason about the influence of specific input bytes on
instructions, such as branch conditionals. This additional
semantic insight allows the fuzzer to concentrate its fuzzing
efforts on specific parts of the application logic and thus
avoid spending time on uninteresting components. Using
symbolic execution allows modeling the target program with
all its constraints. Based on this model, a concrete input
exercising a specific path can be computed. This allows us to
overcome complex constraints, such as checksums, which are
virtually impossible to guess using the previously introduced
lightweight techniques.

While heavyweight feedback-controlled fuzzers have proven
to be an effective solution to the aforementioned problems,
they suffer from a new set of problems. The main limitation
is that they are relatively slow, do not scale to more complex
targets, and require runtime environments that specify, for
example, side effects of library functions [10]. Furthermore,
complex constraints, e.g., cryptographic primitives such as
hash functions or signatures, cannot be solved due to their
non-deterministic polynomial time complexity.

Satellite Architecture

While the general architecture and components of satellites
are well known in the community, we still discuss the com-
ponents relevant to this paper to establish terminology and
set the focus on the relevant components and interaction for
this work. Satellites consist of a satellite bus and satellite
payloads. The bus controls the power supply, attitude control,
payloads, and other subsystems through the Command and
Data Handling System (CDHS). The CDHS is the central
command-and-control structure, as it deploys an On-Board
Controller (OBC) that runs the Flight Software (FSW). This
FSW, here also referred to as firmware, is the main focus
of this work, as it executes security critical tasks, such as
received Telecommands (TCs) from the operators and ground
station, decoding and handling these TCs and generating
Telemetry (TM) if necessary.

The components employed on the bus, such as the power
or attitude control, can themselves contain processors for
advanced configuration options. Thus, they might also handle
some form of command-and-control traffic. Further, the OBC
and potentially other components are connected to a wide
range of peripheral devices such as sensors and actuators.

3

Malicious
Payload

Victim
Payload

Bus

CDHS

Payload
Isolation
Breaker

Lateral
Movement

Supply Chain

Privileged Insider

External Attacker

Supply Chain Attack

COM

Peripherals
Compromised

Device

Figure 2. Attack Surfaces: The figure shows all three
attack directions and their respective attacker types, with the

CDHS in the center

The satellite payload deploys whatever equipment is neces-
sary to carry out the satellite’s mission, such as powerful radio
equipment or Earth observation equipment. The payload can
thereby exhibit an architecture similar to the bus, with its
own infrastructure to handle commands through the Payload
Data Handling System (PDHS). A satellite can have multiple
payloads, of which each payload generates data and requests.
These requests are handled by the bus systems to, e.g., receive
information about the current state of the space vehicle.
However, these requests might also interfere maliciously with
the bus systems or even other payloads.

3. ATTACK SURFACE
Before discussing how satellites can be fuzzed, we analyze
the attack surface to determine suitable targets for our testing
efforts. An overview of the attack surfaces can be found in
Figure 2.

The On-Board Software (OBSW) running on the CDHS ex-
poses several surfaces that attackers can target from multiple
angles. Specifically, we identify three main directions from
where firmware security aspects of the OBSW become rele-
vant. They account for TCs from the ground, commands from
the satellite’s payloads, and input from sensors and other pe-
ripherals that directly communicate with the bus. We further
divide each direction into more fine-granular subdirections to
accurately represent different attacker capabilities. They will
be relevant for our fuzzing considerations, as each of these
surfaces is potentially vulnerable and could be exploited us-
ing firmware vulnerabilities. Hence, our fuzzing approaches
should first focus on testing these attacker-exposed surfaces.

Ground Station Telecommands

We consider TCs from a ground station the first attack surface
since every TC has to be decoded, error corrected, potentially
cryptographically verified, and handled through executing the
corresponding TC handler in the FSW with the parameters
contained in the TC. Since the corresponding data packets
originate from outside the space vehicle, we can make no
assumptions including that they are well-formatted, sanitized,
or strictly compliant with a specific data format or message
structure. Instead, they should be treated as untrusted input
with the goal of exploiting vulnerabilities in protocol parsing,
memory operations, or error handling within the space ve-
hicle’s software stack. Implementing robust input validation
and sanitization is crucial for maintaining integrity and secu-
rity. Given that a TC handler acts as an interpreter between

the ground station’s commands and the spacecraft’s flight
computer subsystems, any vulnerabilities at this stage could
lead to unauthorized access, alteration of mission parameters,
or even complete system failure.

Privileged Insider—Input validation and sanitization are even
relevant for TCs coming from privileged operators. Ulti-
mately, an operator consists of multiple individuals, one of
which may have malicious intentions or one of which may
have been hacked, giving an attacker their access and capabil-
ities. This ability to be or act as an insider allows the attacker
to send TCs that are cryptographically verified, i.e., signed
and encrypted, and, thus, execute all TCs. In the case of semi-
privileged operators, as discussed by Willbold et al. [17],
an attacker may still execute a certain non-critical subset
of TCs. Either way, insiders likely want to escalate their
attack to achieve arbitrary code execution without relying
on software updates, as they might be detected more easily.
Hence, such attackers want to exploit vulnerable TCs, i.e.,
through memory corruption vulnerabilities, to gain remote
code execution on the satellite.

External Attacker— In addition to insider threats, external
actors can also send TCs to the space vehicle by bringing their
own ground station, albeit they lack access to cryptographic
key material. However, even when cryptographic protections
are deployed, error correction and packet parsing happen
prior to decryption and signature verification, according to
standard protocols like CCSDS’ Space Data Link Security
(SDLS) protocol, such that only data of the network layer and
above are encrypted. Hence, protocol parsing vulnerabilities
in lower layers can be triggered without valid access keys. In
addition, cryptographic forging attacks can create malicious
input for the upper packet parsing layer without attackers
possessing access keys.

Payload Command Handlers

In addition to threats from outside the space vehicle, internal
attack surfaces must be considered from an OBSW firmware
security perspective. Specifically, the payloads hosted by
satellites often bring their own PDHS systems with custom
firmware. Further, in many cases, these payloads are devel-
oped and operated by external organizations unrelated to the
satellite operator’s bus system [18]. Hence, these payloads
should be regarded as untrusted external entities that could
pose as threat against the bus system or other payloads on the
satellite. To address this threat, the communication interfaces
in the CDHS firmware interacting with payload components
should be regarded as an attack surface, as they must adhere
to the same rigorous input validation and sanitization as
previously described for ground station TCs.

Lateral Movement—Within payload command handlers, we
define the first subdirection for attacks against the CDHS
itself from the payload. In this case, an attacker tries to
laterally move from the compromised payload to the bus,
escalating the attack.

Medial Movement— If an attack compromises the payload,
it should be confined to this payload. Thus, in addition to
preventing lateral movement, the bus must also ensure that
a compromised payload may not infect other payloads. If
attackers can freely interact with other payloads, this opens
up the commands and data processing of other payloads as
attack surfaces.

4

Malicious Components

Firmware security considerations must also include the attack
surface exposed to components and peripherals on the satel-
lites that are not directly connected to an attacker but still can
send potentially malicious data to the CDHS. These include
components such as power supply systems, attitude control,
and peripherals, i.e., sensors and actuators.

Supply Chain Attacks—Peripherals acquired from third par-
ties could have been prepared by an attacker prior to embed-
ding them into the spacecraft in a supply chain attack. This
would allow attackers to exploit vulnerabilities in the attack
surfaces otherwise not considered relevant due to attackers
being unable to exploit them.

Compromised Devices—While not immediately obvious, in
cases where components bring their own memory and rudi-
mentary computing setup, such as attitude control systems,
attackers could reconfigure them to act maliciously when
interacting with them from the CDHS. In these cases, an
attacker that has compromised a subsystem or a part of
the CDHS might be able to maliciously reconfigure another
component. This compromised component might then be
able to send malicious data to subsystems or components
that are not directly exposed to the attacker. Crucially, this
differs from the supply chain, as this attack is invoked during
a mission, while a supply chain attack is performed ahead of
a mission.

4. FUZZING CHALLENGES
In the following, we enumerate and discuss five key chal-
lenges that significantly impact fuzzing of satellites and are
unique to satellite firmware fuzzing either in their nature or
magnitude. Any approach that successfully performs fuzzing
of spacecraft software must address these challenges. While
some challenges exist for other embedded devices or areas of
fuzzing as well as for space vehicles, we discuss why they
have a unique impact on the fuzzing of satellites compared to
other areas.

Complex Satellite Boot Process

Space vehicles often deploy a rigorous and complex boot
process when first starting or restarting the OBSW. The
startup procedure performs extensive error checking and cor-
rection on persistent flash memory and databases, checks
the presence and health of peripherals, enables hot/cold
spares or redundancies hardware if faults are present, polls
all peripherals to populate the current database of sensor
values, and fulfills numerous other tasks. While many devices
have long boot processes, the one of satellites is particularly
rigorous and lengthy due to the hostile environment. The
main culprits are the extensive error checking and correction,
as first documented by Scharnowski et al. [19].

Only Crashing Inputs

Most fuzzing approaches use crashes as the sole bug oracle
(ref. Section 2), i.e., as a method to detect the presence of
a bug. While this method is simple to implement and has
a proven track record of identifying vulnerabilities, a crash
is usually not the most problematic outcome on a satellite.
Ultimately, watchdog devices can detect a crash and can
restart a satellite. By contrast, changes in configurations of
devices or modifications of flight plans might put the satellite
in a state from which recovery is challenging. Thus, detecting

these issues is vital to identifying critical vulnerabilities in
space vehicles.

Computing Hardware with Limited-Performance

Satellites, especially small satellites such as CubeSats, are
built with harsh space and power limitations in mind. This
often leads to processors with low-performance and low-
energy consumption for the CDHS to run the OBSW. How-
ever, this approach makes it hard to perform fuzzing on the
actual hardware used on the satellites. While testing directly
on the hardware brings the advantage of having the real-
world setup, including the peripherals and other components,
it comes with the drawback of being limited to the system’s
CPU. Further, interesting bug oracles, i.e., means to identify
interesting fuzzing results, can often only be extracted us-
ing debuggers attached to, for example, a JTAG port [20].
However, this additionally slows down the processor, making
fuzzing unfeasible in most cases.

Highly Specialized and Individual Setups

A solution, especially to the limited hardware performance, is
emulating the OBSW. This allows the fuzzer to run on mod-
ern high-performance CPUs, while accepting the overhead
introduced by the emulation setup. However, satellites feature
highly specialized and target-specific setups, with no two
satellites outside of constellations having the same setup. In
addition, many components, such as attitude control, power
supplies, specialized sensors, or payload systems, are unique
or produced in low volumes, making the existence of off-the-
shelf emulation setups unlikely. Further, redundancies and
multiple processors distributed across bus, payload, and indi-
vidual components complicate emulation approaches. These
factors, the plethora of components, and their uniqueness
make satellite emulation setups highly challenging, as they
require intensive and costly target-specific efforts.

While other areas, such as the car or aviation industry, also
feature highly complex setups, they differ in the fact that
developer teams of satellites, especially small ones, consist
of a handful of people. For cars or airplanes, there are hun-
dreds or thousands of responsible engineers, which makes the
development of accurate emulations possible, cost-effective,
and, in many cases, even mandatory.

Performance of Existing Digital Twins

Many modern missions feature a digital twin setup to perform
testing on the ground without having to purchase a second
satellite for a flatsat model or to have a mobile testing setup
for engineers on their personal machines. However, digital
twins are often not a good fit to perform fuzz testing on, as
the setups usually feature a simulation approach where target
CPUs are simulated down to each processing cycle. While
this provides insights for developers to debug issues in depth
without needing real hardware, it also brings a significant
overhead. Hence, these digital twin setups cannot provide
the throughput and performance necessary for efficient fuzz
testing.

5. CASE STUDIES
Considering the attack surface of satellites and the challenges
inherent to fuzzing them, we now outline three different
approaches towards fuzz testing them.

5

Subsystem Extraction

Developed in cooperation with Airbus Defense and Space,
Flying Laptop is a small satellite launched in 2017 and is
operated by the Institute of Space Systems at the University
of Stuttgart [21]. The satellite is used for technology testing,
scientific earth observation, and teaching. The total mass of
120 kg classifies the satellite as a medium-sized satellite and,
thus, no longer as a small satellite.

The OBC is a LEON3 processor, often found in space appli-
cations, and uses a 32-bit SPARC instruction set architecture.
The OBC is connected with an S-Band antenna, which serves
as the satellite’s Communication Module (COM) using the
Consultative Committee for Space Data Systems (CCSDS)
protocol stack, with Space Packet Protocol (SPP) for the
network layer. In addition, the CDHS, which includes the
OBC, is also connected with a custom I/O board that acts as
an internal connector.

The OBSW is logically subdivided into the MkProm2 [22]
bootloader that holds the initial RTEMS operating system
state, compressed via LZSS and the Flight Software Frame-
work (FSFW). The FSFW component is built on top of
RTEMS and provides the base functionality to set up, initial-
ize and connect system objects and tasks. In addition, FSFW
contains reusable functionality to decode and route incoming
CCSDS packets. Based on FSFW, the mission-specific logic
is built, including custom packet parsing.

The fuzzing approach deployed for this system, as shown
in Figure 3, is to extract the TC processing of the satellite
firmware and place it into a Linux executable, which runs
inside an emulated SPARC Linux environment. This ex-
traction allows us to focus the fuzzer on the relevant TC
processing, while also converting the problem of fuzzing
embedded firmware and the prolonged boot process into a
general-purpose fuzzing problem.

Execution Environment—On a technical level, we attempt to
isolate the CCSDS stack and the TC handlers. Fully booting
and running the system in an emulator entails allowing the
firmware to interface with all its peripherals and imple-
menting peripheral logic that provides appropriate responses.
However, some components, especially the I/O board, are
custom-made and would require a target-specific effort to
implement emulation. To avoid this, we extracted parts of
the firmware code containing relevant system features. In
this approach, we targeted the CCSDS stack that parses and
handles TCs. This is an interesting target, as it includes the
mission-specific packet parsing built on top of FSFW. By
isolating a custom subset of the code that implements the
CCSDS stack, we aimed to create a Linux application that can
function without accessing satellite hardware peripherals. We
moved this isolated TC decoding, parsing, and handling into
a Linux-based application that would act as a regular Linux-
based application, which can be executed in the Linux user
space using the QEMU user mode. QEMU is an open-source
virtual machine and emulator. This allows execution of the
application using one TC packet as input, which would be
handled before the application terminates.

Fuzzing Setup—The isolated TC handling in the form of a
Linux-based application allows us to utilize general-purpose
fuzzing tools instead of firmware fuzzing tools. This is an
advantage, as much work has been done on general-purpose
fuzzers such as AFL++ (ref. Section 2). This also simplifies
the fuzzing setup to the point where we only have to ensure
that the TC input is provided in a way AFL++ picks up,

Linux System

Fuzzer

Firmware /
FSW CCSDS Stack

TC Handlers

Linux Userspace
Binary

SPARC QEMU

Figure 3. Fuzzing Setup for Flying Laptop.

i.e., using the Linux read-function. After that, the fuzzing
setup is fully automated and performed by AFL++ as-is. This
fuzzing setup is shown in Figure 3.

Results— It turned out that the FSFW needs a large set of
global objects to be initialized. This made it necessary to
initialize complex C++ object hierarchies manually, which
requires extensive extraction of code and objects from the
firmware into the Linux application. Additionally, some
Linux-incompatible low-level code remained for primitives
such as mutexes, output objects, and message queues. These
instances of incompatible behavior need to be manually
patched so that we can run them in a Linux application. It
turned out that these modifications require extensive manual
and target-specific work to run the CCSDS stack within a
partial execution environment. As a result, finishing the work
would have been beyond the scope of this research project,
but it still serves as an interesting case study, as the insights to
global state and code modifications are applicable for others
as well.

Observations— As an advantage of partial emulation ap-
proaches, we may be able to focus the security analysis on
a specific area of the target. Inherently, partial emulation
requires no functional digital twin. As a major practical
drawback of partial emulation, we find that, depending on the
target, significant custom and target-specific manual work is
required to produce a working execution environment. A sec-
ond drawback pertains to the test coverage. By not executing
large parts of the target under test, we also risk missing crucial
functionality. Additionally, if potential security issues only
become visible from interactions between different compo-
nents, we may cut off execution before this interaction occurs,
thus hiding potential security issues. In our experience, such
interactions are often the cause for vulnerabilities, especially
between components that originate from different authors or
have been designed a long time apart.

Full System Emulation with Persistent Mode Fuzzing

OPS-SAT is a CubeSat-class spacecraft operated by the
European Space Agency (ESA). Co-developed by the Graz
University of Technology, it was launched in December 2019
and has since been serving as an open research experiment
platform. Essentially, any person or group can develop an
experiment for the platform. ESA will review the experiment
and might decide to upload it onto the satellite. Since es-
sentially any actor, including attackers, can develop code and
submit it, this satellite highlights a scenario where untrusted

6

code is to be executed. This aspect and OPS-SAT being open
to research also lead to its inclusion in hacking competitions
and live demonstrations, making it an excellent candidate for
security testing.

In the following, we first outline the technical preparations
before discussing our fuzzing approach. Here, we focus on
the bus system of OPS-SAT , which handles security-critical
command-and-control functionalities, such as decoding and
executing TCs that control the power subsystem, attitude
control, and payload systems. Specifically, the satellite de-
ploys two separate command-and-control channels, one from
a UHF antenna utilizing the libcsp protocol and one from
and S-Band antenna utilizing a CCSDS protocol stack. The
commands from the S-Band antenna can also be sent from the
payload systems, thus this attack surface is also relevant from
a malicious payload user perspective (ref. Section 3).

Our fuzzing setup, as shown in Figure 4, includes a full
system emulation where the fuzzer generates TCs and lets
the emulated firmware process them. All peripherals, such
as sensors and actuators, only deliver constant values. The
constant values are chosen to put the satellite in a valid
operating state to receive and handle TCs. We did not patch
the firmware itself; however, the emulator contains six target-
specific patches that allow us to omit the implementation
of two Memory-mapped I/O (MMIO) devices. Hence, the
target-specific overhead is limited, especially compared to the
approach for Flying Laptop.

Execution Environment—The execution environment to fuzz
the OPS-SAT FSW is developed using a full-system emu-
lation approach with the commonly used QEMU emulator.
Since the OBC of the satellite is an AT32UC3C controller
that uses the AVR32 instruction set, we had to implement
the entire instruction set from scratch, including disassembly,
instructions, and processor peripheral devices. However,
while such an effort is high, it only has to be done once for
the target architecture. We published our implementation for
future use2.

Besides the instruction handlers, we implemented MMIO
controlled processor devices, such as interrupt handlers or
clocks, where a fully working version is required. In other
cases, we only implemented the minimal required functional-
ities.

In cases where interactions were only required in the initial-
ization phase of the FSW, i.e., to set up the device, we either
created a minimal working version that always responds the
same, or we performed an emulator-side target-specific patch,
where we checked for a specific program counter and jumped
to a specific address to skip certain code areas. The latter
approach is highly target-specific and testing intensive, so we
refrained from it as much as possible. Ultimately, we only
had to use it for the SDRAM controller, which controls an
external RAM module to expand memory size, and for the
watchdog timer. Tracking the exact configurations for the
SDRAM controller is unnecessary, as we can assume that
it gets configured in a way that works on the target system,
and there was no user input possible because all values were
hard-coded. Further, exact interactions with the RAM are not
simulated, but we assume that a working memory area inside
the emulator gets treated as any other memory area; only the
location inside the virtual memory space has to be configured.

2https://github.com/flogosec/qemu-avr32

QEMU

Target AVR32
FirmwareFuzzer

Firmware /
FSW

TCs

Feedback

Figure 4. Fuzzing setup for OPS-SAT . The underlying
devices have been specifically implemented in QEMU to

support the platform.

Finally, we also implemented the necessary peripheral buses,
such as SPI and I2C, which, again, was a one-time effort for
the processor family. However, we did not implement target-
specific peripherals, such as sensors, and instead either left
them out entirely, which appears to the firmware as if the
sensor is dead since it is not responding, or we created a
minimal working version that always replies with the same
message. Ultimately, the goal was to create a minimal
working setup to see the minimum effort required to perform
meaningful fuzzing for the target. Again, we ensure that the
satellite is in a valid state to receive commands and process
them, even in the absence of several devices. Theoretically,
these missing devices prevent the firmware from reaching
certain states that require specific inputs. However, building
a perfect emulation is beyond the scope of this project.

In conclusion, this leaves us with a slightly target-specific
full-system emulation, where only necessary components are
fully implemented.

Fuzzing Setup—As a fuzzing approach, we utilize a feedback-
driven persistent mode approach (ref. Section 2), see Fig-
ure 4. We retrieve coverage and crash information from the
emulator, while not fully restarting the firmware after every
execution. Instead, we perform the fuzzing in a loop, starting
at a certain point in the system and resetting the execution
to that point after executing the TC handling. This saves
us from going through the time-consuming boot phase of
the satellite (ref. Section 4). We do not provide fuzzing
input to peripherals and only ensure that they put the satellite
into a state where it can receive and handle commands, i.e.,
the antenna is deployed, sufficient power is available, and
operating temperature is complied with.

Since the state of the satellite potentially changes after every
TC, but fully rebooting it is too costly, we reboot it only every
few thousand fuzzing iterations. This is a trade-off to prevent
too much accumulated state, while still benefiting from fewer
reboots.

Results—The performance of our fuzzing approach was eval-
uated by analyzing how many TC handler functions were
executed. Additionally, we analyzed how many basic blocks
inside each handler function were covered. Other functions
that are called by the TC handler functions are not part of
this metric. A basic block describes a series of processor
operations that end with a jumping or branching instruction

7

https://github.com/flogosec/qemu-avr32

and start at a jump or branching target. Hence, they are the
most basic form of describing chunks of code in a program.
We refer to a basic block as being covered if it is executed
in at least one program execution during the fuzzing. This
ensures that the fuzzer generated input that could reach that
specific basic block, which is a common metric to evaluate
fuzzers. Measuring coverage is commonly done as a proxy
for measuring bugs – the underlying insight is that a fuzzer
cannot find a bug if it did not cover the respective code
location [16].

The fuzzer-generated inputs were able to trigger the execution
of all 59 commands in the firmware. The TC handling
functions contain 1704 basic blocks, of which we covered
1300, or 76%. 32 of the 59 TC handlers were covered
by more than 90%, while only 5 TC handlers achieved a
coverage of less than 50%.

The fuzzer was able to identify one bug that can trigger a
crash of the firmware. The code segment in question uses the
memcpy function to copy data from the user data segment
of a TC to another location in the memory. The size of the
copied data is directly taken from the TC. However, there
is no length check done by memcpy or by the calling code
segment. Therefore, a buffer overflow is possible. If the
length value in the TC is high enough, code pointers in the
memory are overwritten and the firmware crashes when one
of these pointers is loaded the next time. Because a TC is too
short to overwrite the code pointers with useful data, the bug
can result in a denial of service but not in the execution of
arbitrary code.

Observations— Implementing and evaluating our approach
for OPS-SAT yielded several interesting insights. (1) Skip-
ping the boot phase by manipulating the program counter
does reduce the overhead of the boot phase significantly,
but (2) potentially leads not non-reproducible crashes that
were triggered through an accumulated state that cannot be
recreated easily. (3) Missing peripheral devices seem to have
little impact on the satellite. We attribute this to the fault-
resistant development goals and approaches that account for
devices being broken after launch or over time in orbit.
Interestingly, this makes it significantly easier to develop
working emulations.

Full Firmware Rehosting

ESTCube-1 is the first satellite launched by Estonia in
2013. It was developed by students from the University of
Tartu [23], [24], [25]. Though primarily serving as an educa-
tional project for the students, it also carried an experimental
electric solar wind sail (E-sail) as a payload.

The CubeSat deploys a mesh-network approach for TCs,
where each TC packet can be addressed using a dedicated
field to either the Ground Station (GS), CDHS, Camera
(CAM), or one of several other components on the satellite.
Packets to the satellite from the GS are thereby first parsed by
the CDHS before being dispatched to the target component,
which may be the CDHS itself, which then unpacks the
command and handles it, for example, through a command
scheduler. Similarly, the CDHS also sends TM from the
components to the GS. The scheduler system uses its own
packet format to select one of the handler functions and
provide arguments if needed.

Compared to the two previous fuzzing approaches, this ap-
proach uses a well-established fuzzing tool that automates
access to peripherals while also rehosting the entire firmware,

as shown in Figure 5. Since the fuzzer models peripher-
als, the manual target-specific overhead is severely reduced
compared to the previous two case studies. The fuzzer is
still a binary-only fuzzer and does not require source code.
It receives feedback from the emulation setup used for the
rehosting.

Execution Environment—Here, we fuzz test the CDHS with
its command handler in a full-system rehosting approach.
This allows us to use the firmware image as-is without
manual modifications. We use the state-of-the-art rehosting
fuzzer HOEDUR, which automatically infers an emulation
implementation of peripherals during execution [26]. The
initial configuration of the firmware is auto-generated. As
a manual optimization to the generated configuration, we
relaxed the handling of TC packets to feed inputs more
efficiently. Generally the configuration of the firmware in-
cludes interrupts and memory mappings for ROM, RAM and
MMIO regions. HOEDUR executes the firmware in QEMU,
the Instruction Set Architecture (ISA) emulator that has al-
ready been used for OPS-SAT and Flying Laptop. However,
HOEDUR modifies QEMU to allow for higher optimization
through fast snapshots and precise execution control. Further,
instead of requiring manual implementation of peripherals,
accesses to peripherals are automatically analyzed through
symbolic execution when they first occur. Hardware behavior
is modeled by determining which part of the input is actually
relevant to the firmware. The input structure learned by
the fuzzer is further used to improve input mutations, which
reduces the total space the fuzzer has to cover, resulting in
improved code coverage.

Fuzzing Setup—We used the out-of-the-box fuzzing approach
provided by HOEDUR. The firmware is loaded in the ISA Em-
ulator and executed until the first peripheral access is found,
then a snapshot is taken to skip this deterministic initialization
in further executions. For each execution, the emulator
restores the snapshot and forwards peripheral accesses to the
fuzzer, see Figure 5. Each different peripheral is separated
into an input stream, which keeps logically different values
apart and helps the fuzzer to improve mutation efficiency.
The fuzzer considers all possible values and, therefore, also
exercises error handling code. After an execution, the fuzzer
collects coverage and information about crashes, timeouts,
and peripheral impact. This is then used to store inputs with
new behavior and guide further input mutations.

Results— We evaluate the performance of the automated
fuzzing approach in the same way as in the previous case
study. We measure how many TC handlers have been reached
in total as well as the code coverage in these handlers.

The fuzzer successfully crafts High-Level Data Link Control
(HDLC) packets that are sent to the CDHS on the UART
interface. These packets reach all of the 128 TC handlers
on the CDHS. On average, the fuzzer achieves a basic block
code coverage of 78% within the TC handler functions. More
precisely, the handler functions consist of 981 basic blocks,
763 of which were covered.

The fuzzer identified several inputs that led to a firmware
crash. We inspected these crashes and found that they can be
classified into (a) dangerous TC handlers that directly write
memory and (b) two additional bugs that were caused by
programming errors. The TC handlers that directly modify
memory are likely used for patching, recovery, or debugging
purposes. Interestingly, this bug was discovered by marking
certain memory areas as read-only, which triggered as the

8

QEMU
Fuzzer

Hoedur

Target ARM
Firmware

Figure 5. ESTCube-1 Fuzzing Setup: Peripheral and TC
inputs are generated through the fuzzer, with no specific

knowledge of underlying devices.

firmware attempted to write it. Specifically, we marked the
memory area that contains the firmware image in memory
as read-only to identify dangerous (and potentially undocu-
mented) TCs that could overwrite firmware code regions and
could thus allow an attacker to compromise the satellite.

The first additional bug can be triggered through an HDLC
packet with an empty payload, which causes a scheduler
packet to be a nullptr; when handling this packet later,
the scheduler does not check for this, causing a nullpointer
dereference. The second additional bug concerns TC handlers
that do not verify the packet lengths. Thus, attackers can
define a packet size field value that varies from the actual
packet length. This, in turn, leads the TC handlers to read
more memory from the location where the TC is stored, caus-
ing an out-of-bounds read that can potentially disclose secret
information, similar to the well-known OpenSSL heartbleed
(CVE-2014-0160) vulnerability. This bug, among others, was
first presented by Willbold et al. in a case study of the satellite
to explore the security situation of Low Earth Orbit (LEO)
satellites [17].

Observations—This approach has low manual overhead and
only requires access to the firmware image to get started. In
addition, the fact that accesses to peripherals are automat-
ically modeled avoids the need to manually implement an
accurate peripheral handler as seen in the OPS-SAT approach
(ref. Section 5). This also addresses the challenge regarding
highly specialized and individual setups (ref. Section 4),
as the exact setup is almost irrelevant due to the peripheral
modeling approach. Further, the fuzzer deploys a snap-
shotting mechanism that takes the snapshot of the execution
environment of the fuzzer upon first receiving input from a
peripheral device after booting. This allows us to skip the
overhead associated with prolonged booting phases, which
we also identified as a typical challenge (ref Section 4).
Finally, marking memory regions as read-only allowed us
to identify dangerous TC handlers that pose a security risk,
as attackers abuse them to introduce firmware patches, as
already noted by Willbold et al. [17].

Takeaways

In summary, we analyzed firmware images of three satellites
using different techniques. Our focus was in particular on the
following four aspects:

(1) The amount of manual effort to track how feasible the
approach is for other setups to overcome the challenge of
highly specialized and individual setups.

(2) How the approach handles our challenge of complex
satellite boot processes.

(3) The feasibility of performing the testing without hard-
ware to address the challenge of limited-performance com-
puting hardware.

(4) The ability to detect non-crashing inputs that trigger
bugs, as defined in our challenge “only crashing inputs”.

Our practical experience showed that using a full-system
rehosting approach, as seen for ESTCube-1 in our last case
study, provides the most benefits. Addressing (1), it required
the least amount of manual effort, as it required only a small
configuration file for the fuzzer, mainly auto-generated after
a quick program analysis. Regarding (2), the snapshotting
mechanism to capture the execution state after booting al-
lowed us to bypass the boot process without dealing with a
tainted global state, as seen with the persistent state fuzzing
approach for OPS-SAT .

Since all our approaches utilized emulation, they all bypassed
the need for actual hardware to address (3).

The only point all approaches fail to fully address is (4).
Fuzzing inherently needs a bug oracle that triggers on an
observable event, such as a program crash or timeout. While
very generic, these indicators may not detect all bugs, such as
configuration issues. In other fields, first attempts at finding
better bug oracles that are more tailored to a specific area have
been made, for example, to find server-side web application
bugs [27], [28]. To the best of our knowledge, no comparable
approach has been undertaken to provide bug oracles for
erroneous configurations or the realm of satellites. That
said, HOEDUR mapping code pages as read-only to identify
bugs in ESTCube-1 overwriting code improves the detection
capability of the regular crash oracle.

6. RELATED WORK
Firmware Fuzzing

Fuzzing has proven to be an effective technique to expose
robustness and security issues in code. Firmware, however,
as opposed to common software such as Linux command-
line tools, is difficult to combine with off-the-shelf fuzzers.
Thus, firmware fuzzing approaches have traditionally used
blind fuzzing and tested firmware on the physical device [29],
[30], [31], [32]. Later approaches have partially virtualized
firmware fuzzing by combining an emulator with selective
execution on the original hardware using hardware-in-the-
loop [33], [34], [35]. However, none of these works looks
at satellite or space systems firmware in particular.

Recently, research opened the possibility to fully virtualize
firmware fuzzing via a technique called rehosting [36]. While
firmware fuzzing approaches that require specialized hard-
ware suffer from low execution speeds, incomplete coverage
feedback, and the need for a manual hardware setup, re-
hosting executes firmware in a fully virtual and parallelized
environment. This allows for gathering detailed execution
feedback and scaling firmware fuzzing to server resources. A

9

recent work, Fuzzware [37], has introduced hardware model-
ing via firmware binary analysis techniques. Building upon
Fuzzware, Hoedur [26] introduced additional techniques to
make rehosting-based fuzzing aware of its target, which
further increases fuzzing effectiveness greatly. We use both
Fuzzware and Hoedur in our setup for ESTCube-1.

Satellite Fuzzing

Previous work has explored some options to apply fuzzing
to satellite firmware. Notably, Scharnowski et al. [19] per-
formed three case studies using the ESTCube-1 approach
presented in this paper by leveraging their rehosting-based
fuzzer Fuzzware [37]. However, it was primarily an analysis
of how well their fuzzer works for satellite applications, while
this work explores the general challenges to fuzzing satellite
applications and accounts for multiple approaches to do so.

Further, Gutierrez et al. [38] explored the possibility to per-
form fuzzing on their satellite SUCHAI-1. On a technical
level, the paper discusses how the satellite’s flight software
can be fuzzed while discussing and evaluating several strate-
gies. Again, the paper does not discuss challenges or compare
larger-scale approaches like our work does.

7. CONCLUSION
In this work, we have discussed fuzzing and its applicability
to satellites. After introducing fuzzing, we analyzed the
attack surface of satellites, enumerated challenges that need
to be addressed for efficient and effective satellite software
fuzzing, and presented three concrete approaches backed by
experimental case studies. Our results show that rehosting
satellite software is the most promising approach towards
fuzzing satellites and that fuzzing is a worthwhile security
testing technique to improve the security of satellite soft-
ware.

ACKNOWLEDGMENTS
This work was funded by the German Federal Min-
istry of Education and Research (BMBF, project CPSec –
16KIS1564K). The work was partially supported by the
MKW-NRW research training group SecHuman.

REFERENCES
[1] The MITRE Corporation, “2023 CWE Top 25 Most

Dangerous Software Weaknesses,” https://cwe.mitre.
org/top25/archive/2023/2023 top25 list.html, 2023.

[2] Google, “OSS-Fuzz: Continuous Fuzzing for Open
Source Software.” [Online]. Available: https://github.
com/google/oss-fuzz

[3] M. Zalewski, “American Fuzzy Lop,” http://lcamtuf.
coredump.cx/afl/.

[4] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse,
“AFL++ : Combining Incremental Steps of Fuzzing
Research,” in USENIX Workshop on Offensive Tech-
nologies (WOOT), 2020.

[5] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based Greybox Fuzzing as Markov Chain,”
IEEE Transactions on Software Engineering, vol. 45,
no. 5, pp. 489–506, 2017.

[6] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed Greybox Fuzzing,” in ACM Con-
ference on Computer and Communications Security
(CCS), 2017.

[7] C. Lemieux and K. Sen, “Fairfuzz: A Targeted Mu-
tation Strategy for Increasing Greybox Fuzz Testing
Coverage,” in International Conference on Software
Engineering (ICSE), 2018.

[8] lafintel, “laf-intel - Circumventing Fuzzing Road-
blocks with Compiler Transformations,” https://lafintel.
wordpress.com.

[9] Google Project Zero, “CompareCoverage,” https:
//github.com/googleprojectzero/CompareCoverage,
2019.

[10] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik,
and T. Holz, “RedQueen: Fuzzing with Input-to-State
Correspondence,” in Symposium on Network and Dis-
tributed System Security (NDSS), 2019.

[11] P. Chen and H. Chen, “Angora: Efficient Fuzzing by
Principled Search,” in IEEE Symposium on Security and
Privacy (S&P), 2018.

[12] S. Poeplau and A. Francillon, “Symbolic Execution
with SymCC: Don’t Interpret, Compile!” in USENIX
Security Symposium, 2020.

[13] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A
Practical Concolic Execution Engine Tailored for Hy-
brid Fuzzing,” in USENIX Security Symposium, 2018.

[14] N. Bars, M. Schloegel, T. Scharnowski, N. Schiller,
and T. Holz, “Fuzztruction: Using Fault Injection-based
Fuzzing to Leverage Implicit Domain Knowledge,” in
USENIX Security Symposium, 2023.

[15] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Driller: Augmenting Fuzzing Through Selective
Symbolic Execution,” in Symposium on Network and
Distributed System Security (NDSS), 2016.

[16] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating Fuzz Testing,” in ACM Conference on
Computer and Communications Security (CCS), 2018.

[17] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt,
T. Holz, and A. Abbasi, “Space Odyssey: An Exper-
imental Software Security Analysis of Satellites,” in
IEEE Symposium on Security and Privacy (S&P), 2023.

[18] H. Burkhardt, “The DLR microlauncher and payload
competition,” https://www.dlr.de/rd/en/desktopdefault.
aspx/tabid-15784/25586 read-65808/, 2022.

[19] T. Scharnowski, F. Buchmann, S. Wörner, and T. Holz,
“A Case Study on Fuzzing Satellite Firmware,” in Work-
shop on the Security of Space and Satellite Systems
(SpaceSec), 2023.

[20] M. Eisele, D. Ebert, C. Huth, and A. Zeller, “Fuzzing
Embedded Systems Using Debug Interfaces,” in ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 2023.

[21] M. Pikelj and R. Heinrich. (2017) Successful Launch of
German Technology Mini Satellite. [Online]. Available:
https://www.airbus.com/en/newsroom/press-
releases/2017-07-successful-launch-of-german-
technology-mini-satellite

[22] Cobham Gaisler AB, “MKPROM2 User’s Manual,”
https://www.gaisler.com/doc/mkprom.pdf, 2022.

10

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://lafintel.wordpress.com
https://lafintel.wordpress.com
https://github.com/googleprojectzero/CompareCoverage
https://github.com/googleprojectzero/CompareCoverage
https://www.dlr.de/rd/en/desktopdefault.aspx/tabid-15784/25586_read-65808/
https://www.dlr.de/rd/en/desktopdefault.aspx/tabid-15784/25586_read-65808/
https://www.airbus.com/en/newsroom/press-releases/2017-07-successful-launch-of-german-technology-mini-satellite
https://www.airbus.com/en/newsroom/press-releases/2017-07-successful-launch-of-german-technology-mini-satellite
https://www.airbus.com/en/newsroom/press-releases/2017-07-successful-launch-of-german-technology-mini-satellite
https://www.gaisler.com/doc/mkprom.pdf

[23] I. Sünter, “Design and Characterisation of Subsystems
and Software for ESTCube-1 Nanosatellite,” Ph.D. dis-
sertation, Tartu University, 2019.

[24] I. Sünter, A. Slavinskis, U. Kvell, A. Vahter, H. Kuuste,
M. Noorma, J. Kutt, R. Vendt, K. Tarbe, M. Pajusalu
et al., “Firmware Updating Systems for Nanosatellites,”
IEEE Aerospace and Electronic Systems Magazine,
2016.

[25] I. Sünter, “Software for the ESTCube-1 Command
and Data Handling System,” Ph.D. dissertation, Tartu
Ülikool, 2014. [Online]. Available: https://core.ac.uk/
download/pdf/79106475.pdf

[26] T. Scharnowski, S. Woerner, F. Buchmann, N. Bars,
M. Schloegel, and T. Holz, “Hoedur: Embedded
Firmware Fuzzing using Multi-Stream Inputs,” in
USENIX Security Symposium, 2023.

[27] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna,
C. Kruegel, R. Wang, T. Bao, Y. Shoshitaishvili, and
A. Doupé, “Toss a Fault to your Witcher: Applying
Grey-box Coverage-guided Mutational Fuzzing to De-
tect SQL and Command Injection Vulnerabilities,” in
IEEE Symposium on Security and Privacy (S&P), 2023.

[28] E. Güler, S. Schumilo, M. Schloegel, N. Bars, P. Görz,
X. Xu, C. Kaygusuz, and T. Holz, “Atropos: Effective
Fuzzing of Web Applications for Server-Side Vulnera-
bilities,” in USENIX Security Symposium, 2024.

[29] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang,
W. C. Lau, M. Sun, R. Yang, and K. Zhang, “IoTFuzzer:
Discovering Memory Corruptions in IoT Through App-
based Fuzzing,” in Symposium on Network and Dis-
tributed System Security (NDSS), 2018.

[30] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu,
S. Nepal, and Y. Xiang, “Snipuzz: Black-Box Fuzzing
of IoT Firmware via Message Snippet Inference,” in
ACM Conference on Computer and Communications
Security (CCS), 2021.

[31] C. Mulliner, N. Golde, and J.-P. Seifert, “SMS of Death:
From Analyzing to Attacking Mobile Phones on a Large
Scale,” in USENIX Security Symposium, 2011.

[32] N. Schiller, M. Chlosta, M. Schloegel, N. Bars, T. Eisen-
hofer, T. Scharnowski, F. Domke, L. Schönherr, and
T. Holz, “Drone Security and the Mysterious Case of
DJI’s DroneID,” in Symposium on Network and Dis-
tributed System Security (NDSS), 2023.

[33] N. Corteggiani, G. Camurati, and A. Francillon, “In-
ception: System-Wide Security Testing of Real-World
Embedded Systems Software,” in USENIX Security
Symposium, 2018.

[34] M. Muench, A. Francillon, and D. Balzarotti, “Avatar2:
A Multi-target Orchestration Platform,” in Symposium
on Network and Distributed System Security (NDSS),
Workshop on Binary Analysis Research, 2018.

[35] M. Kammerstetter, C. Platzer, and W. Kastner,
“Prospect: Peripheral Proxying Supported Embedded
Code Testing,” in ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
2014.

[36] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov,
B. Dolan-Gavitt, M. Egele, A. Francillon, L. Lu, N. Gre-
gory et al., “SoK: Enabling Security Analyses of Em-
bedded Systems via Rehosting,” in ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2021.

[37] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson,
M. Muench, G. Vigna, C. Kruegel, T. Holz, and A. Ab-
basi, “Fuzzware: Using Precise MMIO Modeling for
Effective Firmware Fuzzing,” in USENIX Security Sym-
posium, 2022.

[38] T. Gutierrez, A. Bergel, C. E. Gonzalez, C. J. Rojas,
and M. A. Diaz, “Toward Applying Fuzz Testing Tech-
niques on the SUCHAI Nanosatellites Flight Software,”
in IEEE Congreso Bienal de Argentina (ARGENCON),
2020.

BIOGRAPHY[

Johannes Willbold Johannes received
his B.Sc. and M.Sc. from the Ruhr
University Bochum in Germany in 2018
and 2020, respectively. He is currently a
doctoral student in the systems security
group, working on space and satellite
systems security. His work focuses on
firmware security aspects of space sys-
tems, with a recent research paper at the
44th IEEE Symposium on Security and

Privacy (S&P) presenting a security analysis of LEO satel-
lites. As subgroup chair, he is also working on transferring
recent academic advances into the IEEE Standard for Space
System Cybersecurity (S2CY).

Moritz Schloegel received his M.Sc.
degree in IT security from Ruhr Univer-
sity Bochum. Currently, he is a sys-
tems security researcher and PhD can-
didate at CISPA Helmholtz Center for
Information Security. He is working on
automating the process of finding bugs,
identifying their root cause, and assess-
ing the severity. Beyond that, he works
on scaling analysis techniques to new

sectors, such as satellite security. He is contributing to
the IEEE Standard for Space System Cybersecurity (S2CY)
standard as a subgroup vice-chair.

Florian Göhler Florian received his
B.Sc. from the TU Dortmund University
in 2018. In 2022 he finished his M.Sc.
at the Ruhr University Bochum. His
Master’s thesis focused on the emula-
tion and fuzzing of CubeSat firmware.
Outside academia, Florian develops in-
formation security requirements for Ger-
many’s public sector. Florian is also a
member of the IEEE working group for

the Standard for Space System Cybersecurity (S2CY).

11

https://core.ac.uk/download/pdf/79106475.pdf
https://core.ac.uk/download/pdf/79106475.pdf

Tobias Scharnowski is an embedded
systems security researcher at CISPA
Helmholtz Center for Information Secu-
rity. He received his M.Sc. degree in IT
Security from Ruhr University Bochum.
In his academic research, Tobias devel-
ops scalable and efficient techniques to
test (the security of) embedded systems
via virtualization. Outside academia, he
performed different software vulnerabil-

ity assessments, including a hack of the DNP3 protocol, the
technology underlying the US electric grid.

Nils Bars is a PhD student and sys-
tems security researcher at the CISPA
Helmholtz Center for Information Secu-
rity based in Saarbrücken. His research
focuses on automated bug detection in
software via testing techniques such as
fuzzing. He received his B.Sc. degree
in Applied Computer Science in 2016
from the Hamburg University of Applied
Sciences and his M.Sc. in IT Security

Networks and Systems in 2019 from the Ruhr University
Bochum.

Simon Wörner received his B.Sc. from
HTWG Konstanz - University of Applied
Sciences in 2018 and his M.Sc. from
Ruhr University Bochum in 2021. He is
a security researcher and Ph.D. student
at the CISPA Helmholtz Center for Infor-
mation Security. His academic research
is focused on scalable, automated and
dynamic security testing of embedded
systems firmware.

Nico Schiller is a security researcher
and doctoral student at CISPA Helmholtz
Center for Information Security. He
received his B.Sc. degree in computer
science in 2018 from the Bochum Uni-
versity of Applied Sciences and his M.Sc.
in computer security in 2021 from the
Ruhr University Bochum. His research
focuses on the analysis and exploitation
of consumer drones and he has a keen

interest in fuzzing and wireless physical layer security.

Thorsten Holz received his M.Sc. de-
gree in Computer Science from RWTH
Aachen in 2005 and a Ph.D. in Com-
puter Science from the University of
Mannheim in 2009. He is currently a
tenured faculty at the CISPA Helmholtz
Center for Information Security. His
research interests include technical as-
pects of secure systems, with a specific
focus on systems security.

12

	Introduction
	Background
	Attack Surface
	Fuzzing Challenges
	Case Studies
	Related Work
	Conclusion
	Acknowledgments
	References
	Biography

