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ABSTRACT

Feedback-driven greybox fuzzing is one of the cornerstones of mod-
ern bug detection techniques. Its flexibility, automated nature, and
effectiveness render it an indispensable tool for making software
more secure. A key feature that enables its impressive performance
is coverage feedback, which guides the fuzzer to explore different
parts of the program. The most prominent way to use this feedback
is novelty search, in which the fuzzer generates new inputs and
only keeps those that have exercised a new program edge. This
is grounded in the assumption that novel coverage is a proxy for
interestingness. Bolstered by its widespread success, it is easy to
overlook its limitations. Particularly the phenomenon of input shad-
owing, i. e., situations in which an “interesting” input is discarded
because it does not contribute novel coverage, needs to be con-
sidered. This phenomenon limits the explorable input space and
risks missing bugs when shadowed inputs are more amenable to
mutations that would trigger bugs.

In this work, we analyze input shadowing in more detail and find
that multiple fuzzing runs of the same target exhibit a different basic
block hit frequency despite overlapping code coverage. In other
words, different fuzzing runs may find the same set of basic blocks
but one might exercise specific basic blocks significantly more
often than the other, and vice versa. To better distribute the block
frequency, we propose restarting the fuzzer to reset the fuzzing
state, diversifying the fuzzer’s attention across basic blocks. Our
preliminary evaluation of three FuzzBench targets finds that fuzzer
restarts effectively distribute the basic block hit frequencies and
boost the achieved coverage by up to 9.3%.
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1 INTRODUCTION

Fuzzing is a highly effective technique for uncovering bugs in pro-
grams, and in recent years it has gained rapid popularity in the
software security testing community. Starting with feeding ran-
dom inputs to Linux command line utilities and observing their
behavior [24], fuzzing has evolved into a highly specialized, well-
developed technique that has undergone significant improvements
in the past few years. Especially feedback-driven greybox fuzzing,
as popularized by AFL [35], is one of the most significant advance-
ments in fuzzing. This technique changes the approach from ran-
domly generating inputs and observing the program to monitoring
which parts of the program each input covered. This coverage guid-
ance allows the fuzzer to effectively and efficiently select, mutate,
and execute inputs that trigger new program behavior, maximizing
the parts of the program that are tested.

To uncover as many bugs and, thus, security vulnerabilities as
possible, a fuzzer attempts to test as much of the program’s input
space as possible. For this purpose, the fuzzer modifies a set of
inputs using its mutators. Effectively, the fuzzer’s mutators and the
corpus shape the input space of the target that the fuzzer can cover.
As fuzzers fundamentally rely on novelty search, they only accept
inputs to the corpus if they exercise new code coverage within
the target program. All inputs that exercise the same coverage are
discarded, allowing the fuzzer to optimize its search to discover
new program regions.

Unfortunately, this limits the input space that can be explored.
Assume the fuzzer finds an input that hits new coverage in the
program. The fuzzer considers this input novel and adds it to the
corpus for further mutations. Now, the fuzzer finds another, dif-
ferent input, yet it exercises the same coverage; this second input
will be discarded because it is not novel. We say the first input
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shadows the second one. The second input, however, could be an
essential precursor to reach an interesting program location, even
when not exploring new coverage. This is due to the fuzzer’s inner
workings: It derives the next input to test by selecting one input
from the corpus and mutating it. As a result, the reachable input
space is bounded by (i) the mutations a fuzzer can apply and (ii)
the inputs in the corpus. This implies that parts of the input space
remain unreachable (with non-negligible probability) to the fuzzer
as the available mutations applied to the corpus yield only a subset
of all potential inputs. The existence of other, shadowed inputs in
the corpus would increase the theoretically reachable input space.
From this point of view, shadowed inputs should be included in
the corpus to allow the fuzzer to explore a larger part of the input
space. Yet, this is infeasible in terms of performance and collides
with the principles of novelty search, calling for new techniques.

Previous work has explored two directions to address this prob-
lem. First, approaches such as CollAFL [14], datAFLow [16], or
InvsCov [11] implicitly attempt to circumvent this problem by us-
ing more fine-granular or different feedback mechanisms. They
increase the likelihood of considering inputs novel according to
their metric, which were previously shadowed. On the other hand,
increasing the number of inputs that are considered novel automat-
ically causes the queue to grow, leading to the problem of wasting
fuzzing cycles on irrelevant inputs. Even though these techniques
decrease the number of shadowed inputs, they do not address the
underlying problem. The second approach is techniques that bridge
farther gaps in the input space, as depicted in Figure 1. This can
either be archived by dividing the gap into several smaller ones
(e. g., via cmplog [2, 12]) or by improved mutations. Intuitively, we
can use target-specific mutations to bridge farther gaps and, thus,
increase the reachable input space [4, 21, 22]. While this may de-
crease the impact of shadowed inputs, it also does not address the
underlying problem.

In this work, we analyze the impact of shadowed inputs on
the explored input space and investigate a strategy to mitigate its
effects: fuzzer restarts. By adaptively restarting the fuzzer, we reset
its internal state and, thus, enable it to consider other inputs as
novel that were shadowed before. We hypothesize that fuzzers may
benefit from such restarts in terms of coverage and bugs found, as
this would undo previous decisions that potentially jammed further
fuzzer progress. While this appears counterintuitive, as information
accumulated by costly executions is discarded, our preliminary
results indicate that this technique is beneficial in diversifying the
basic blocks tested and helping the fuzzer find new coverage.

In summary, we make the following key contributions:

• We shed light on the fact that fuzzing runs with the same ini-
tial configuration focus their attention on different program
parts and frequently exhibit input shadowing, even though
they achieve similar code coverage.

• To quantify this phenomenon, we propose basic block fre-
quency as a new metric to measure the distribution of the
fuzzer’s attention across different program parts.

• Based on these insights, we present several scheduling strate-
gies that reset the fuzzing state via fuzzer restarts, thereby
mitigating input shadowing and achieving high block fre-
quency as well as code coverage.

𝑖1

𝑖2

𝑡

Figure 1: Input space of a target program. Grey areas mark

areas leading to the same coverage, red circles represent the

input spacewe can reachwith ourmutations given the respec-

tive input. As illustrated, 𝑖1 and 𝑖2 exercise the same coverage,

however, our mutations can derive input 𝑡 only from 𝑖2.

• We publish our code and artifacts at https://github.com/
CISPA-SysSec/fuzzing-restarts.

2 MOTIVATION

Before presenting our design, we discuss the concepts of novelty
search and input shadowing and their impact on fuzzing progress.

2.1 Novelty Search in Fuzzing

A novelty search algorithm is an exploration algorithm driven by
the observation of the novelty of a specific behavior [10]. In the
field of fuzzing, novelty search is primarily used to determine if a
given input is interesting for further mutations. For example, AFL
uses a novelty search algorithm to decide whether an input should
be kept by observing its yielded coverage during execution. The
fast novelty search algorithm employed by AFL is one of its key
features contributing to the success of its performance. Unfortu-
nately, novelty search also comes with drawbacks, such as input
shadowing, discussed in the next section.

2.2 Input Shadowing

We define input shadowing as a situation in which an input is
discarded because it does not contribute unique coverage, i. e., it is
not novel. Suppose we have an input 𝑖1 that is novel, and another
input 𝑖2 achieves the same coverage; furthermore, 𝑖2 is also an
essential predecessor for some hypothetical inputs that will trigger
some bug. We say that both inputs share a novelty equivalence class
and that 𝑖1 shadows 𝑖2, since 𝑖2 will be discarded due to lack of
novelty. We emphasize that 𝑖2 is not necessarily better or worse
than the first input, 𝑖1 – the difference is only at the byte level. This
difference allows the fuzzer’s mutations to create other inputs from
𝑖2 than from 𝑖1. Consider an example program with the input space
in Figure 1: Our mutations would be able to find another interesting
input, 𝑡 , when applied on 𝑖2, however, not on 𝑖1. As both share the
same coverage and 𝑖1 is discovered first, we will not consider input
𝑖2 and, thus, not generate input 𝑡 . Consequently, we may never
exercise this part of the program, as the fuzzer blocks itself.

We empirically study this phenomenon for a fuzzing campaign
of libpng by recording basic blocks hit during the fuzzing runs.
More precisely, we run AFL++ multiple times for 24 hours using
four different tweaks: As a baseline, we use a standard setup of
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(a) No restarts (b) Restart after 12h

(c) Restarts every 6h (d) Restarts every 2h

10−1 100 101

Figure 2: Heatmaps based on Hilbert curves showing the

frequency of basic blocks hit during a fuzzing run relative to a

baseline run (we use themedian run from ten 24h repetitions

for each). Each cell represents a basic block; blue basic blocks

■ indicate the median baseline run hit this basic block more

frequently, and red ■ indicates the opposite. This shows

that fuzzer restarts diversify the basic blocks visited, as its

inherent randomness causes the fuzzer to hit different blocks.

AFL++ without any restarts. Additionally, we use three further se-
tups with restart frequencies of 12, 6, and 2 hours, resulting in 1, 3,
and 11 restarts, respectively. To account for inherent randomness,
we conduct the experiment ten times for each fuzzer and use the
median trial for the subsequent analysis and Figure 2. We sample
every 10, 000-th input during the runs and record the basic blocks
it hits. Importantly, we do not work on the queue to avoid survivor-
ship bias. As each input accepted into the corpus is novel, if we
sample from the queue, we would blur the experiment’s results,
biasing our analysis towards such inputs while ignoring shadowed
inputs. Due to the large number of inputs executed by fuzzers, we
only sample the covered basic blocks for a subset of them.

We show the results of this experiment as heatmaps using Hilbert
curves in Figure 2, comparing the frequency of basic blocks hit
against the baseline without any restarts. Each cell marks a distinct
basic block; blue ■ indicates the block was hit more often by the
baseline, while red ■ denotes the block was visited more often by
the tweak. White indicates equal frequency, meaning both fuzzers
visited the basic block the same number of times. The difference is
represented through the shade, with darker colors representing a
larger difference. Crucially, all represented fuzzing runs (baseline
and restarted versions) exercised comparable coverage (see Table 1).

When running this experiment, one may intuitively assume that
fuzzing runs with roughly equal coverage would exercise basic
blocks at approximately the same frequency. However, when we

Table 1: Block coverage of the median run from ten 24h runs

and blocks covered more than twice as often by the baseline

■ or our restarted fuzzer ■.

#basic blocks favoring
Median ■ baseline ■ tweak

baseline 1,069 – –
no-restart 1,068 267 113
reset 12h 1,139 306 77
reset 6h 1,167 124 167
reset 2h 1,187 75 227

compare two ordinary fuzzing runs that were not restarted, we
find the opposite: As depicted in Figure 2a, the distribution of
frequencies shows differences exceeding an order of magnitude. In
other words, each fuzzing run stresses different parts of the program
while still achieving comparable code coverage. This implies that
the final coverage results (in the form of the corpus) are no accurate
representation of the input distribution tested during the fuzzing
run. Executing a novel coverage once suffices to add this input to
the corpus, even if it is never tested again – similarly, a basic block
exercised thousands of times may be represented by a single input
in the corpus. We emphasize that this observation does not imply
that measuring code coverage is an inferior metric, as it is still a
very good proxy for the observed program states.

The key insight to tackle the problem of input shadowing is
that distinct fuzzing runs exhibit different block-hitting frequencies.
Intuitively, this difference in basic blocks that the fuzzer focuses on
implies that distinct inputs are generated and executed. Hence, the
likelihood of different fuzzing runs picking all the same input from
a novelty equivalence class, e. g., all fuzzing runs picking 𝑖1 first
and not 𝑖2, is low in the general case. We empirically verify this
hypothesis by comparing the corpora of two non-restarted fuzzing
runs on the byte level. After using SHA-256 to hash all inputs of
the respective corpora, we find that all inputs of two different runs
are unique (except for the seed files). As the coverage of the runs
is almost equal (cf. Table 1), this indicates the two runs selected
different inputs from the novelty equivalence classes. On an abstract
level, we can consider that running the fuzzer is a dice throw leading
to some corpus. Throwing the dice again, i. e., running the fuzzer
a second time, may yield the same coverage, albeit the corpus is
likely to contain different inputs.

We observe that this ability to generate a different corpuswithout
coverage loss mitigates the problem of input shadowing. As a result,
re-running the fuzzer can be a worthwhile strategy to maximize
the utilization of different inputs. We note this is already commonly
done in fuzzing to mitigate the effects of randomness introduced
by the fuzzing process. This observation of input shadowing also
explains the common wisdom that a fuzzer may find a vulnerability
in some runs but not others. Despite exercising similar coverage,
it may find the inputs suited to trigger the bug in some runs; in
others, it discards the potential input because the input is shadowed
by another input from the same novelty equivalence class.

One problem with running the fuzzer multiple times is the as-
sociated cost: Running the fuzzer a second time doubles the cost,
rendering the benefit of having potentially some different inputs
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tested unclear. To avoid this cost, we could restart the fuzzer after
half the runtime, say after 12 hours. This would presumably create
a better frequency distribution of basic blocks hit, however, at the
cost of potentially missing out on coverage. To investigate whether
this works in practice, we restarted the fuzzer one time (after 12
hours), three times (after 6 hours each), and eleven times (after 2
hours each), resulting in Figures 2b, 2c, and 2d, respectively. As
these heatmaps show, a higher number of restarts is indeed helpful
to diversify the set of hit basic blocks. Interestingly, a single restart
after 12 hours (Figure 2b) worsens the block frequency. On the other
hand, restarting the fuzzer more than once, shifts the frequency
distribution clearly in favor of the tweak, i. e., the restarted fuzzer.
At the same time, the more restarts occurred, the more coverage
was found, even though it is still similar to the baseline.

In summary, our experiment indicates that fuzzer restarts can
potentially help to mitigate input shadowing and have a positive,
yet minor impact on found coverage at the same time. We speculate
that with a better, more adaptive strategy than restarting the fuzzer
after a fixed time period, we can further increase the benefits.

2.3 Challenges

A better strategy to overcome these fixed interval restarts must
mainly solve two challenges. First, we must determine a “good”
point in timewhen to reset the fuzzer. Restarting it too early will pre-
vent it from exploring deeper program parts meaningfully. Restart-
ing the fuzzer too late, on the other hand, spends fuzzing time
without accounting for the effect of input shadowing.

Second, fully resetting the fuzzer state discards valuable informa-
tion. We hypothesize that maintaining a balance between keeping
valuable information, such as seeds unlocking new application com-
partments, and discarding this information that potentially shadows
other inputs could be worthwhile. The underlying insight is that
solving some fuzzing roadblocks and uncovering new coverage can
be challenging, potentially restricting the fuzzer to a small part of
the program when continuously restarting it. The challenge is to
find an optimal balance between information kept and discarded.
Ultimately, the ideal strategy would be to restart the fuzzer when
the likelihood of finding new coverage is behind a certain threshold
and discard all inputs leading to this situation. In practice, the lack
of information renders both challenging. While we could collect
more precise information during fuzzer runtime, this increases the
runtime overhead, reducing the fuzzer’s effectiveness.

3 ADAPTIVE FUZZER RESTARTS

To overcome these challenges and mitigate input shadowing with-
out sacrificing code coverage, we propose a scheduler that uses
several techniques to reset the fuzzer’s state at the right moment.

3.1 Restart Scheduler Overview

The restart scheduler is responsible for the orchestration of a
fuzzing campaign. It is not to be confused with fuzzer-internal
seed scheduling. In our case, the scheduler’s task is to monitor a
fuzzing run and restart the fuzzer according to some metric dis-
cussed subsequently. This restart may include the preservation of
the fuzzing state.

To demonstrate the scheduler’s behavior across a fuzzing cam-
paign, we show an overview in Figure 3. First, an initial 𝑟𝑢𝑛0 is
launched by spawning a fuzzer instance. As with traditional fuzzing,
we need to provide it with a set of initial seeds. Then, our scheduler
monitors this instance during fuzzing ➊. In particular, it tracks
changes, such as paths found, which are used to decide whether to
restart ➋ the fuzzer based on some restart policy. In the event of
a restart, the currently running fuzzer instance 𝑟𝑢𝑛𝑛−1 is stopped,
and—if we want to keep some state across the restart—its result-
ing 𝑞𝑢𝑒𝑢𝑒 is processed according to our corpus strategy ➌. The
preserved state as a subset of the 𝑞𝑢𝑒𝑢𝑒 is then passed to the next
fuzzing run 𝑟𝑢𝑛𝑛 as initial seeds (alongside the original seeds). The
process then continues with monitoring the new instance ➍ until
the next restart is due.

3.2 When to Restart: Coverage Plateaus

The first challenge is identifying a suitable time to restart the fuzzer.
Coverage plateaus. We rely on the insight that all fuzzing runs
hit so-called coverage plateaus. This denotes the time when the
fuzzer, despite continuously mutating inputs, fails to uncover any
new coverage. This manifests as a plateau in coverage plots, yield-
ing the descriptive name. Retrospectively, such coverage plateaus
are easily identified; during the actual run, it is difficult to predict
whether the fuzzer is stuck in a plateau or is close to solving some
complex constraints that yield new coverage. To achieve a com-
putationally feasible yet effective recognition of such plateaus, we
propose the following heuristic: We consider the fuzzer to be situ-
ated in a plateau when it fails to uncover new coverage, i. e., new
edges of the program, for n minutes, where n is a small number
such as 15, which empirically works well in our experience.
Detection heuristics. Our scheduler features multiple strategies
to decide the point in time at which to restart the fuzzer. The first
and most naïve one does not rely on detecting coverage plateaus
but instead uses a fixed or random countdown and restarts the
fuzzer once this countdown expires (akin to the strategy used in
the motivating experiment in Section 2). While this heuristic is
straightforward, it has a major drawback: It does not account for
the current performance of the fuzzing run. Using this heuristic
might cause the fuzzer to be restarted while discovering a new
compartment of the target application.

To avoid degrading the fuzzer’s performance because of poorly
timed restarts, our restart scheduler monitors the coverage progress
of the fuzzer to determine whether the fuzzer is currently advancing.
Every time the fuzzer finds new coverage, the countdown is reset,
essentially only restarting the fuzzer when it hits a coverage plateau
and fails to find new coverage for a certain amount of time. This
adapts the fuzzer restarts to the program under test.

Unfortunately, this approach still has a disadvantage for targets
where new coverage is found slowly but steadily. Imagine a fuzzer
that finds a single new edge every five minutes: We speculate that
restarting aggressively despite finding this edge can be beneficial.
Thus, our scheduler features a third heuristic that uses a threshold
allowing the configuration of the degree of coverage growth that
causes our restart timer to be reset. The threshold is calculated over
the fuzzing progress observed in the past.

In summary, our restart scheduler features three heuristics:
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Figure 3: Overview of our restart scheduler

(1) Blind restarts with fixed or random reset countdown
(2) Coverage plateau-based resets
(3) Coverage growth rate-based resets using a threshold

3.3 How to Restart: Corpus Retention

The second crucial design decision we must consider for our sched-
uler is how much of the fuzzer’s state should be reset. This directly
translates to how much of the generated corpus we want to pre-
serve across fuzzing runs by passing them as initial seeds to the
subsequently started run.
Motivation. The most basic approach is to reset the complete
state of the fuzzer and start in a new environment, such that the
new instance has no information about the previous advancement.
This approach has the disadvantage that the new fuzzing run must
re-explore the entire program. For this reason, more advanced
strategies are desirable, which keep parts of the generated corpus
from the previous run to consecutively transfer some of the cover-
age information to subsequent runs. This partly preserved corpus
bootstraps the fuzzer, since it immediately has several inputs that
explore different program behaviors.
Corpus retention strategies. Our scheduler is equipped with the
following six strategies to identify the parts of the corpus to keep.

(i) Reset. This strategy represents a full reset; it does not keep
any files from the corpus, thus not preserving any information.

(ii) Corpus Pruning. Upon a restart, corpus pruning randomly
selects a percentage between 5% and 95% of generated inputs from
the corpus to delete. Removing more inputs reduces the effects of
input shadowing, while at the same time requiring the fuzzer to
spend more cycles rediscovering inputs. We speculate there is no
universally good formula to decide which inputs to discard, as it
is a highly target-dependent problem. Thus, our scheduler uses
random choice, in the spirit of fuzzing, to explore both directions
in a balanced way.

(iii) Timeback. The timeback strategy selects a random times-
tamp, at which the corpus of the current run is a snapshot. Upon
restart, our scheduler passes this snapshot of the corpus to the new
fuzzing run. This effectively deletes all files in the corpus found
after a specific point in time. The motivation is to reset the fuzzer’s
attention and allow it to re-explore the program from this specific
point in time.

(iv) Tree Chopper. The idea behind the tree chopper strategy is
to remove all offspring from one or more selected files within the
generated corpus. This allows us to identify trees of inputs, i. e., one

input and all subsequent inputs derived from this one via mutations.
The scheduler selects a random subtree in the input-mutation graph;
then, all offspring originating from this input is removed from the
corpus. This approach allows the fuzzer to explore different states
based on the remaining corpus and potentially make alternative
decisions regarding the remaining corpus.

(v) Tree Planter. The tree planter strategy is similar to tree
chopper, with the key difference being that all generated trees
except a single one are removed. This may allow the fuzzer to
explore a particular part of the target in greater depth.

(vi) Ensemble. Similar to ensemble fuzzing, where multiple
fuzzers are combined and scheduled adaptively [9, 15], we hypoth-
esize that an ensemble strategy, which dynamically selects the
most suitable strategy for the respective target under test, could
improve the results. If all restart conditions are met, we use a pre-
defined strategies priority and the accumulated performance of
each used strategy from the previous runs to decide whether we
should replace the current strategy.

4 IMPLEMENTATION

To test the impact of restarts during a fuzzing campaign, we imple-
mented our scheduler in a prototype called Sileo, which spawns
and monitors the underlying fuzzer instances. Our prototype is
written in 1, 027 lines of Python code and uses AFL++ in version
4.06a for fuzzing the target under test. Sileo can be easily combined
with other fuzzers, as it requires only three primitives: (1) Sileo
must receive information regarding the coverage achieved so far
(e. g., the number of paths found). (2) It must have access to the
inputs considered interesting (i. e., the queue) to apply one of the
corpus retention strategies. (3) Sileomust be able to start and stop
a new fuzzer instance. As these requirements are satisfied by vir-
tually every general-purpose fuzzer, replacing Sileo’s underlying
fuzzing engine is straightforward.

In the case of AFL++, the coverage can be monitored by ob-
serving the fuzzer_stats file, which periodically exports several
fuzzer metrics via the filesystem. Likewise, access to the generated
inputs can be achieved by reading the content of AFL++’s queue di-
rectory. Since AFL++ is a user-space application, the spawning and
termination of a fuzzer instance can be facilitated using standard
OS primitives for process creation and termination.
Coverage plateau detection heuristics. To detect coverage met-
rics, we periodically poll the fuzzer_stats file and examine the
elapsed time since the last_find and the corpus_count. A restart
is triggered if the last_find time exceeds the restart countdown.



FUZZING ’23, July 17, 2023, Seattle, WA, USA Nico Schiller, Xinyi Xu, Lukas Bernhard, Nils Bars, Moritz Schloegel, and Thorsten Holz

When the threshold-based restart heuristic is used, we save the
current corpus_count and calculate the threshold based on the
last 𝑛 values of these corpus counts. If the restart countdown has
elapsed and the threshold has been reached, a restart is triggered.

Corpus retention strategies. We implement the different corpus
retention strategies introduced in Section 3.3 in Sileo.

After a restart has been scheduled, first, a copy of the current
queue is generated. After that, depending on the chosen retention
strategy, some files are potentially discarded and shuffled to account
for input shadowing, while importing the newly generated seed
corpus. Once the fuzzing campaign ends, the coverage of the fuzzer
are calculated over all runs via llvm-cov.

For our preliminary experiments, we used FuzzBench [23]. How-
ever, we observed that disk space usage increases significantly when
using our corpus-based strategies, since FuzzBench creates peri-
odic snapshots of the corpus. To mitigate this issue, we modify
FuzzBench to only store the last two corpus archives. Addition-
ally, to facilitate sampling of every input (instead of only those in
the corpus), we patch AFL++ and add functionality to store every
𝑛-th execution. This feature is used during evaluation to compute
matrices over the generated fuzzer test cases.

5 PRELIMINARY EVALUATION

For our preliminary evaluation, we use our prototype Sileo and test
it with different heuristics to decide when to restart the fuzzer and
various corpus retention strategies to process the corpus. We first
discuss the preliminary experiments we have already conducted
before outlining the experiments we plan to run upon acceptance
of this report in Section 5.3.

Experiment Setup We perform our evaluation on a server with
an Intel Xeon Gold 6230R CPU with 52 cores at 2.10GHz and 196GB
memory, running Ubuntu 22.04. We use FuzzBench to orchestrate
the fuzzing campaign and run each strategy as an individual fuzzer.
We ran all fuzzers for 24 hours and repeated each experiment ten
times to account for inherent randomness in the fuzzing process,
as recommended by Klees et al. [17]. The fuzzer we use in our
experiments and as a baseline to compare our scheduler to is AFL++
in version 4.06a.

To evaluate the impact of restarting the fuzzer on the code cov-
erage it exercises, we conducted a preliminary evaluation on three
diverse programs from FuzzBench: libpng, libpcap, and sqlite.
To test Sileo, we choose two basic strategies to showcase the im-
pact (i) of clean restarts after the coverage stagnates without any
parts of the corpus being preserved (reset) and (ii) of restarts that
rely on the previous corpus (corpus pruning). Both strategies are
restarted when a randomly chosen countdown (between 5min and
30min) elapses after detecting a coverage plateau without signifi-
cant coverage growth. To identify slow coverage growth, we set the
threshold to 2% of the current restart run coverage. If the restart
countdown elapses and the average coverage growth drops below
the threshold for some time (here, we empirically set this period to
5 minutes), we then issue a restart.
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Figure 4: Coverage plot of libpng showing the strategies

corpus pruning and reset compared to the baseline AFL++.
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Figure 5: Coverage plot of libpcap showing the strategies

corpus pruning and reset compared to the baseline AFL++.
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Figure 6: Coverage plot of sqlite showing the strategies

corpus pruning and reset compared to the baseline AFL++.

5.1 Code Coverage

We plot the coverage in Figures 4, 5, and 6, respectively. Across all
three targets, the results show that restarts via the corpus strategy
corpus pruning lead to higher code coverage, outperforming both
the baseline AFL++ and the reset strategy. On the other hand, the
performance of the reset strategy seems to depend on the target:
while it performs worse than the baseline on sqlite, it performs
similarly on the other two targets. Compared to corpus pruning,
reset performs worse on sqlite and libpcap, but has a slight
advantage on libpng.

To confirm our results, we follow Arcuri’s and Briand’s recom-
mendation [1] and consider the two-sided non-parametric Mann-
Whitney-U test as well as the effect size as determined by Vargha’s
and Delaney’s 𝐴12 test [30]. We depict them in Table 2. For corpus
pruning, all results regarding the baseline are statistically signif-
icant and the effect sizes are large, while for our second strategy,
reset, only two cases are statistically significant, in one of which
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Table 2: Statistical analysis of our code coverage experiment,

with the hypothesis that tweak performs better than baseline.

We use the median coverage values to measure the effect size

using Vargha’s and Delaney’s 𝐴12 test and use their catego-

rization (L = large, M =medium, S = small; a minus represents

a negative effect size, indicating the tweak is worse than the

baseline) [30]. We use the two-sided non-parametric Mann-

Whitney-U test and mark 𝑝 < 0.05 in bold.

tweak baseline target effect size p-value

corpus pruning baseline
sqlite +L(0.99) < 0.0001

libpcap +L(0.88) 0.0029

libpng +L(0.98) < 0.0001

reset baseline
sqlite -L(0.10) 0.0015

libpcap +M(0.71) 0.1230
libpng +L(0.98) < 0.0001

corpus pruning reset
sqlite +L(1.00) < 0.0001

libpcap +M(0.71) 0.1230
libpng -S(0.43) 0.6842

Table 3: Number of restarts over ten runs (med. = median).

Target Strategy

#restarts

min avg max med.

sqlite
corpus pruning 4 4.7 6 5
reset 18 19.0 22 18

libpng
corpus pruning 18 18.9 20 19
reset 12 13.1 14 13

libpcap
corpus pruning 11 12.7 15 13
reset 17 19.4 21 20

the effect size is large but negative. When comparing our strategies,
we find that the observed differences are statistically significant
only for sqlite, where a large effect size is observed. Even though
reset slightly outperforms corpus pruning on libpng, the differ-
ence is not statistically significant.

To introspect our techniques, we track the number of restarts
performed by corpus pruning and reset throughout the evalu-
ation in Table 3. Interestingly, neither strategy seems to have a
definitive edge over the other, with the number of restarts being
similar. corpus pruning features more restarts on libpng, reset
on sqlite and libpcap. When relating this data to the code cov-
erage, we find the number of restarts appears to have fewer for
the strategy finding more coverage. For libpng and libpcap, this
effect is barely visible as both strategies find very similar coverage.
For sqlite, on the other hand, corpus pruningwas restarted only
five times, yet finds significantly more coverage than reset. This
indicates that corpus pruning continuously found new coverage,
while reset did not. This implies keeping state is beneficial on
sqlite, suggesting that the fuzzer finds it more difficult to unlock
new coverage on sqlite than on libpng or libpcap.

Our empirical evaluation shows that different restart strategies
significantly impact the results. We find that corpus pruning
outperforms reset for two targets and is superior to the baseline
for all targets, indicating this is a promising strategy to increase
code coverage.
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Figure 7: Basic block frequency plot of libpng showing the

strategies corpus pruning, reset and the baseline AFL++.

Lower values of n (x-axis) indicate rarely hit basic blocks,

higher values of n represent basic blocks hit more frequently.

5.2 Basic Block Frequency

Beyond code coverage, we analyze the benefits of fuzzing restarts
in terms of better distributing the frequencies of hit basic blocks,
i. e., better spreading the fuzzer’s attention to a diverse set of basic
blocks. To this end, we use the inputs sampled during the fuzzing
runs (similar to the experiment in Section 2). We do not use the
corpus to avoid biasing our results. The plot in Figure 7 illustrates
the distribution of basic block hits as a Cumulative Distribution
Function (CDF). It displays the least frequent hit basic blocks on
the left and the basic blocks hit most frequently on the right. For
example, the program’s entry point is the most commonly hit basic
block and, thus, is positioned at the far right side of the plot. We
then plot the frequency of all basic blocks being hit on the y-axis.
As shown in Figure 7, both reset and corpus pruning trigger
basic blocks more frequently than the baseline, particularly for less
frequent basic blocks. This demonstrates that restarting the fuzzer
and reusing parts of the corpus increases the probability of en-
countering rare basic blocks more frequently. Interestingly, roughly
fifty basic blocks have neither been found by corpus pruning nor
baseline, but only by the reset strategy.

Distributing the fuzzer’s attention more evenly across basic
blocks potentially enhances the coverage and bug-finding capa-
bilities of the fuzzer. By enabling the fuzzer to trigger rare basic
blocks more often, it can also explore new coverage areas associ-
ated with such edges. Due to the cost associated with sampling,
we restrict our analysis of block frequency to libpng, but we will
extend this experiment to all three targets for the full version of
this work.

5.3 Planned Evaluation

We plan to extend our evaluation in several aspects to substantiate
our hypotheses further and evaluate how restarting fuzzers impacts
fuzzing runs. In particular, we want to add new targets, test all
strategies introduced in Section 3, and test the bug-finding ability.



FUZZING ’23, July 17, 2023, Seattle, WA, USA Nico Schiller, Xinyi Xu, Lukas Bernhard, Nils Bars, Moritz Schloegel, and Thorsten Holz

New targets and strategies. Our preliminary evaluation fo-
cuses on a subset of three targets from FuzzBench to limit com-
putational resources spent. We plan to extend our evaluation to
six diverse targets from the FuzzBench dataset. More precisely,
we pick freetype, lcms_cms, and libxml2, as other targets ex-
hibit few differences in achieved coverage between fuzzers in the
latest FuzzBench reports [13]. Beyond FuzzBench, we intend
to fuzz three commonly fuzzed real-world programs, e. g., 7zip,
pdftotext, and objdump. In total, we want to evaluate nine targets.

We intend to test the combination of all six strategies and heuris-
tics presented in Section 3 for all nine targets. We have previously
motivated why certain strategies could be worthwhile and plan
to empirically evaluate whether our assumptions hold using the
complete set of targets. Since we observed that the performances
of the corpus strategies depend on the target, a more advanced
ensemble approach that chooses the best strategy to clean up the
corpus after restarting may be beneficial.

Bug-finding ability and long-term runs. As the primary goal
of fuzzing is to uncover bugs, our future evaluation aims to analyze
the potential enhancement in bug-finding capabilities through the
use of fuzzing restarts. Considering the phenomenon of input shad-
owing, we hope that restarts can facilitate the exploration of unique
code paths and increase the frequency of triggering vulnerable code.
Additionally, we intend to assess the impact of restarts on complex
targets during prolonged fuzzing campaigns.

6 DISCUSSION

In the following, we discuss potential threats to validity and address
the differences between code coverage and block frequency.

Threats to Validity. Ensuring the validity of conclusions drawn
from empirical experiments is essential. Our research emphasizes
three key dimensions that are particularly relevant to this goal. We
outline our assumptions and describe our steps to ensure that our
experiments maintain their validity.

External validity. To test our approach, we select different types
of targets from Google’s test suite FuzzBench for our preliminary
evaluation. We used FuzzBench because it is a widely used bench-
mark framework for fuzzing. For our future evaluation, we plan
to extend our evaluation to more FuzzBench targets and evaluate
our approach on widely used targets such as objdump, 7zip, and
pdftotext. Furthermore, we plan to test our approach on other
types of fuzzing targets, such as Javascript JIT engines, to study the
potential benefits of our approach.

Internal validity. Due to the non-determinism nature of the
fuzzing process, we repeated our experiments ten times to achieve
statistical significance and calculated several statistical metrics to
quantify our experimental results. Furthermore, we used the well-
established and proven fuzzing test suite FuzzBench to orchestrate
and evaluate our experiments.

Construct validity. Finally, as a third threat to validity, we ensure
that our evaluation measures what it is supposed to measure. To
avoid discrepancies between the baseline and our tested strategies,
we ensure that they all rely on the same fuzzer configuration and
the same fuzzer version of AFL++.

Code coverage vs. block frequency. In both the scientific litera-
ture and practice, code coverage is one of the standard metrics used
to compare the performance of fuzzers. If a fuzzer achieves a high
code coverage, it means that it can potentially trigger more bugs,
as the fuzzer must reach buggy code in the first place. This paper
introduces block frequency as a novel metric to augment, rather
than replace, code coverage. Measuring block frequency can help
understand which basic blocks the fuzzer has focused on the most.

7 RELATEDWORK

Our work is closely related to several previous works, and we now
place our work in the context of the literature.

Resetting State. Resetting the state or starting over with a clean
environment has been observed to have beneficial effects in various
areas. For example, Zaidi et al. [34] discusses how reinitializing a
neural network can significantly improve training results. They
note that this phenomenon is surprisingly understudied and under-
used. In the field of program synthesis, Koenig et al. [18] recently
showed that restarting stochastic synthesis tasks can boost the
speed of synthesis by an order of magnitude. Similar to fuzzing,
their initial observation is that synthesis tasks advance through
a series of plateaus, which tend to be heavy-tailed and, thus, can
get stuck without making further progress. Even in biology, clean
“restarts” can be beneficial [19].

Coverage Plateaus. Similar to our approach, previous work has
identified coverage plateaus as an excellent point in time to help the
fuzzer. According to Lemieux et al. [20], the phenomenon known as
coverage stall or coverage plateau occurs when a search algorithm,
after undergoing several mutation iterations, fails to exhibit any fur-
ther improvements in code coverage. Despite generating multiple
mutated test cases, none of them succeed in covering any previ-
ously unexplored code within the program under test. Hence, the
authors use the term “coverage stall” to describe this state. While
Sileo opts to restart the fuzzer in such a case, Lemieux et al. [20]
propose to use Large Language Models (LLMs) tailored towards
code generation, such as Codex, to “unstuck” the fuzzer.

Fuzzing. Fuzzing has a long and successful history, starting with
Miller’s initial work [24]. Important hallmarks include the introduc-
tion of coverage feedback, popularized by AFL [35], which spurred
a vast body of subsequent research. Directions covered include
even more heavyweight feedback techniques such as taint track-
ing [8, 32] or symbolic execution [6, 26, 33], improved seed sched-
uling [5, 29], or entirely new approaches [3, 7, 25, 27, 28, 31].

8 CONCLUSION

In this work, we present a starting point for mitigating the impact of
input shadowing on fuzzing campaigns. We found that the novelty
search used by fuzzing algorithms limits its practically reachable
input space. To mitigate this effect, we propose a fuzzing campaign
scheduler called Sileo that restarts fuzzers adaptively to diversify
their attention. Our preliminary results on a subset of FuzzBench
indicate that Sileo effectively distributes the hit block frequen-
cies and better spreads the fuzzer’s attention across different basic
blocks.
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